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ABSTRACT

It is well established that the effectiveness of pay-for-performance (PfP) schemes depends on
employee- and firm-specific factors. Much less is known about the role of factors outside the firm.
We investigate the role of market competition on the effectiveness of PfP. Our theory posits that
there are two counteracting effects, a business stealing and a competitor response effect, that jointly
generate an inverted U-shape relationship between PfP effectiveness and competition. Weak
competition creates low incentives to exert effort because there is little extra market to gain, while
strong competition creates low incentives as competitors respond more. PfP hence has the strongest
effect for moderate competition. We test this prediction with a field experiment on a retail chain

which confirms our theory and refutes alternative explanations.

Keywords: pay for performance (PfP), management practices, market competition, business

stealing, competitor response



INTRODUCTION

Pay-for-performance (PfP) schemes are an integral part of many firms” management practices and
HR strategy (Becker and Gerhart, 1996; Bloom and VVan Reenen, 2011; Gerhart, Rynes and Fulmer,
2009; Lemieux, MacLeod and Parent, 2009). There is robust evidence that such schemes affect
overall employee performance (Lazear, 2000; Friebel et al., 2017), and a large body of work has
linked their effectiveness to a number of contextual factors within the firms that use them. But how
important is the environment that a firm finds itself in determining the effectiveness of PfP

practices?

This question is interesting both theoretically as well as empirically. Theoretically, while
there is no doubt that competition as well as management practices affect firm performance, the
effectiveness of applying specific practices in certain competitive settings has not been studied in
much detail. However, the marginal benefit of a management practice is likely to be affected by
the competitive environment, which determines the expected profit margin and likely strategic
responses by competitors. Hence, a management practice may be more or less effective depending
on the competitive environment in which it is applied. Empirically, the implementation of
management practices is typically subject to endogenous choices as practices are applied where
they are most likely to succeed, and firms applying certain practices often differ from those that do
not. Consequently, isolating empirically the effect of a particular management practice (PfP
schemes) in heterogeneous competitive environments is challenging, but potentially rewarding.
Moreover, there is a consensus that different market structures may convey different incentives to
firms to engage in efficiency-enhancing behavior and that oligopolistic markets often fare best. It

is thus an empirical question whether this also applies to the implementation of PfP schemes.



We build and subsequently test a simple analytical model that posits that a PfP scheme as
a competitive action carries both a business stealing effect that increases the marginal benefits of
such an action with the degree of competition, and a competitor response effect that decreases its
marginal benefits with higher competition. These two effects combined imply an inverted U-
shaped relationship between competition and the effectiveness of PfP schemes. We test this
prediction by looking at performance effects of a given PfP scheme conditional on the intensity of
local competition. We run a field experiment with a German bakery retail chain of 193 shops
operating in local markets. In 2014, a team PfP scheme was introduced to half of the shops
(randomly chosen) upon (over-)fulfilling a pre-defined sales target. In the control group, sales
teams received only a fixed wage. This exogenous PfP assignment was combined with detailed,
hand-collected data on the competitive structure of local markets. Our setting of randomly assigned
treatment to shops within a single firm eliminates the confounding effects of selection and
heterogeneity across firms (with and without PfP schemes) and thus allows us identify the causal

effect we are interested in fairly precisely.

The findings confirm our theory: the effect of PfP on sales is highest (up to 9%) when local
competition is moderate. Sales teams located in low- and high-competition areas respond much
less to incentives. This result is robust to possible alternative explanations. Moreover, we take
advantage of the heterogeneity in competitor types to empirically disentangle the business stealing
from the competitor response effect. We show that in locations where competitors are less likely
to respond — i.e. where competitors are large chain supermarkets — the effectiveness of PfP
increases with competition, rather than showing an inverted U-shape pattern. This suggests the

presence of the business stealing effect when the competitor response effect is likely to be muted.



Our work contributes to ongoing strategy research on the impact of external factors on the
effectiveness of management practices in the broader context of strategic human resource
management. We identify heterogeneous effects of a commonly used management practice for the
incentives to provide discretionary effort. The implications of such heterogeneity go beyond
cautioning that the “one-size fits all” approach in the design of management practices might not
work. In fact, strategic behavior by incentivized agents, i.e. the expectation of competitor
responses, seems to be an important factor influencing the effectiveness of incentives and the
likelihood of their adoption in addition to business stealing (Raith, 2003) and bankruptcy risk (Hart,
1983). An additional contribution is to study compensation strategy for a low-technology service
task. Most research on PfP schemes has focused on CEOs and top management, while non-
executive pay is the largest part of total compensation costs to firms. By studying incentive pay for
ordinary service workers — a large and growing job category (Autor, 2015) — we complement the
existing strategy literature on PfP schemes. Finally, our work responds the call for more use of
field experiments in strategy research (Chatterji et al., 2016), showcasing the potential that field

experiments offer for detecting causal relationships in natural settings.

PRIOR WORK

There is a broad consensus that incentives work “on average”, i.e. they improve
performance in the outcome variables that is incentivized (Kerr, 1975; Prendergast, 1999).
However, some studies have reported inconclusive results (Pfeffer, 1998), suggesting that there is
significant heterogeneity in the effectiveness of PfP. Scholars have tried to explain the
heterogeneity in PfP effectiveness through differences in employee attitudes towards incentives,

including motivation crowding-out (Frey and Jegen, 2001; Gneezy and Rustichini 2000), gaming



the compensation system (Harris and Bromiley, 2007; Holmstrom and Milgrom, 1991;
Larkin, 2014; Obloj and Sengul, 2012), comparison costs and peer effects (Chan, Li and Pierce ,
2014; Giarratana, Mariani and Weller, 2017; Obloj and Zenger, 2015 and 2017), the
communication of PfP schemes (Englmaier, Roider and Sunde, 2016) and demographic
characteristics such as gender (Delfgaauw et al., 2013; Manthei, Sliwka and VVogelsang, 2017). At
the team level, researchers have considered the tradeoff between individual and team-wide
incentives (Bandiera, Barankay and Rasul, 2013; Pierce, 2012; Hamilton, Nickerson and Owan,
2003; Kretschmer and Puranam, 2008), free-riding (Holmstrom, 1982), and unequal treatment
within teams (Friebel et al., 2017) as limiting factors for PfP effectiveness. This battery of studies
is successful in showing that PfP schemes work only if the circumstances are favorable, and that
many internal factors about the nature of the task, the level of incentives and the personal

characteristics of employees receiving the incentives may play a role.

An important subset of studies investigating the performance effects of PfP schemes is the
literature on top executive incentives, often in the form of stock options. Most strategic
management research especially has focused on CEOs and top management almost to the exclusion
of non-executives (Chng et al., 2012; Devers et al., 2007; Finkelstein and Hambrick, 1988; Gomez-
Mejia and Wiseman, 1997; van Essen, Otten and Carberry, 2015; Wowak and Hambrick, 2010).
Indeed, Larkin, Pierce and Gino (2012) report that nearly 75% of recent papers on compensation
in top strategy journals study executive pay, in contrast to compensation for non-executive
employees, which has been the domain of the HR literature (Gerhart and Fang, 2015; Gerhart and
Weller, 2017). A complementary body of work in strategic management has highlighted that PfP
works well for simple and ordinary tasks but is less suitable for more knowledge-intensive activities

(Ederer and Manso, 2013; Gambardella, Panico and Valentini, 2015).



Contrary to the scores of studies on factors internal to the firm and their impact on PfP
effectiveness, factors outside the organization that may hamper or facilitate the effect of PfP are
still largely unexplored. Given that the intensity of competition has been shown to affect firm
behavior in many other dimensions like the generation or adoption of innovations (Aghion et al.
2005; Kretschmer, Miravete and Pernias, 2012), we focus on competition as a context variable
outside the firm as a potential moderator for the effectiveness of PfP schemes. It has been shown
that competition affects firm efficiency and profits directly (Bloom and VVan Reenen, 2007; Porter,
1990; Nickell, 1996), which suggests that firms facing strong competition seek out ways of
increasing their efficiency, e.g. through beneficial management practices. Related to this, a stream
of theoretical studies has linked the intensity of market competition to the likelihood of adoption
of incentives (Baggs and De Bettignies, 2007; Hart, 1983; Raith, 2003; Schmidt, 1997; Vives,
2008). Specifically, Raith (2003) and Schmidt (1997) theorize that there are counteracting forces
determining the relation between managerial incentive adoption and competition. Through
different theoretical mechanisms, Baggs and De Bettignies (2007) posit that competition increases
firms’ propensity to adopt steep (i.e. performance-related) incentives. These predictions are tested
by several empirical studies, which broadly confirm that adoption and sensitivity of incentive

contracts increase with competition (Baggs and De Bettignies, 2007; Cuiiat and Guadalupe, 2005).

THEORY

PfP contracts are designed to motivate employees to voluntarily exert discretionary (non-
contractible) effort (Prendergast, 1999). Team PfP schemes aim to boost joint effort and
performance at the team level. When referring to effort throughout our theory, we imply costly
actions of the team taken to increase the performance. Extra effort in this framework may mean
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working faster, improving service quality or reducing operational costs. With a PfP contract, the
team decides whether to exert discretionary effort to increase expected output and the resulting
expected bonus, or keep the previously chosen effort level unchanged despite the potential bonus.
As we show below, by affecting the outcomes of this decision, market competition affects the
optimal effort choice and consequently the effectiveness of the PfP contract. Our setup is a sales

team within a shop, where PfP bonus is paid to them conditional on shop sales. We assume:

Al) Teams independently (from other shops) choose effort to maximize net expected payoff from

the PfP.

A2) Teams operate in a homogenous product market with n > 0 locally based competitors

producing goods that are close substitutes.

A3) Team efforts change their market share, while their possible effects on market size, for
instance, by stimulating customers to spend more, are second-order. Moreover, prices and margins

remain the same.!

The first assumption made for simplicity and is inconsequential given our focus on the
factors outside the firm that influence the effectiveness of PfP. The second and third assumptions
are reasonable given our context in which there is a standard production technology, the nature of

demand for baked bread, is local and demand for bread is stable.?

The expected increase in sales after exerting effort under PfP is by definition proportional
to the product of the extra market share to be gained, denoted by f(n), and the probability of

gaining it, denoted by p(n). Both components depend on the number of locally operating

1 The inflation-adjusted growth rate of the German market for bread and related products is less than 0.5% per year.
Source: www.baeckereihandwerk.de.
2 Relaxing these assumptions would make the model messier, but the qualitative properties would remain the same.
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competitors (n)— which is our proxy of market competition (Klanins, 2003). With sales being the

performance measure, we specify a sales team’s expected payoff as follows:

(1) E(Payoff) = a[p(n) - f(n)] —¢,

where 0 < a < 1 is the share of additional sales that is distributed to agents and e is the cost of
effort.3 The team will exert effort if the expected bonus net of effort costs is nonnegative, and will
not react to the PfP otherwise. Thus, with a constant cost of effort, the likelihood of exerting
discretionary effort under PfP depends on the amount of the market share gain the effort could
potentially generate, and on the probability of gaining it — i.e. [p(n) - f(n)]. We now explain
how each of these two factors determine the effectiveness of PfP, and how their effect depends on

local competition.

The “business stealing” effect. We assume that competitive actions enabled by additional effort
can lead to winning more business. Given constant market size, this means business is taken away
from competitors — a phenomenon often referred to as the business stealing effect (Raith, 2003).
The market gain through business stealing increases with competition (Baggs and De Bettignies;
2007; Hermalin, 1992; Raith, 2003; Vives, 2008). Indeed, when competition is high, a sales team
has a small ex-ante market share so that a large portion of the market remains to be “stolen” through
competitive action. In contrast, with low competition, the team is likely to enjoy a large market
share already, with less to be gained than when competition is high. In the extreme case of no
competition, the monopolist already serves the whole market, so extra effort cannot increase market

share. As the market share gained through business stealing translates into extra bonus for the sales

% The linearity assumption is made for analytical convenience but is actually more restrictive than needed as there is a
wider class of monotonic functions «[-] that may generate our results, including the piecewise one that was actually
implemented by our study firm. Also note that in our formulation, there is no penalty for a possible market loss that
may occur as a result of competitor response. While this is a restrictive assumption, it is not unrealistic since PfP
contracts, including that practiced in our study firm, are typically limited-liability ones.
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team, more competition increases the marginal product of effort and thus the likelihood of exerting

discretionary effort and the effectiveness of PfP in terms of the additional sales it generates.

To demonstrate this effect in our formal setting, consider a simple case of a focal shop with
n identical competitors and perfectly substitutable goods. In this case, the focal shop and

competitors initially share the market equally. Normalizing market size to one, each competitor’s
ex-ante share equals ﬁ In this example, any competitive action by the focal sales team — if not
countered by competitors— would generate a monopoly by winning the rest of the market. Thus,
the ex-post market share gain will be f(n) =1 — ﬁ which increases with n. This implies that

higher competition increases the expected payoff through the business stealing effect — see equation
(1). Figure (1) shows the relation between competition and the expected payoff of effort through

business stealing.

The “competitor response” effect. The likelihood of market share gain generated through
discretionary effort by an incentivized sales team depends on the (re-)actions of competitors, who
may respond to remain on the market (D'Aveni, 1994; Ferrier, Smith and Grimm, 1999; Porter,
1980). These responses need not be identical to the competitive action of the focal firm — i.e.
introduction of a PfP scheme. There can be a range of competitive responses which would offset
the payoff of effort for the focal team. Accordingly, as the focal team anticipates this response, the
PfP scheme may result in lower than expected, or even no extra effort if the chances of competitor

response are high.



Suppose each competitor reacts to the competitive action of the focal shop with a constant
probability P.* Consider first the simple case of no competitor reaction, which happens with

probability p(n) = (1 — P)™. In this case, assuming, as above, perfect substitutability, the market

: . . 1
share gain through business stealing is 1 — — and the expected net benefit from extra effort

is E(Payoff) = a - (1 — ﬁ )(1 — P)™ — e. Clearly, while the market share to be won through a

competitive action increases with n, the chances of winning it decrease with # due to the competitor

response effect — see Figure (1). The product of these effects has an inverted-U pattern.

Generalizing on the above result, suppose i out of n competitors choose to react by
responding to the competitive action taken by the focal team, while the remaining n — i do not
react and lose their market share. The probability of this event is CJ* - P* - (1 — P)"%, where C" is

the number of i-combinations out of n. The corresponding market share gain per competitor is

ﬁ. (1 — 1%11) —that is, each of the i responding competitors plus the focal shop gets an extra ﬁth

of the difference between the whole market of size 1, and their total previous market share, —

i+1
n
Aggregating over all possible cases of competitor reactions, from none to all reacting, the expected

net benefit from extra effort to the focal sales team is

; i1 i+1 _
) E(Payoff) = a - XjL, (- PL- (1= P)" i — (1- ) —¢.
Equation (2) shows that the response by one or more competitors reduces the focal firm’s
gains from moving to a monopoly (if no competitor responds) to competing with a number of other

firms (that have responded). Given that exerting discretionary effort is costly for the team, with the

market share shrinkage caused by competitor response, the amount of bonus may not be worth the

* Representing P as a function of contextual factors, such as market density, is straightforward, but tangential to our
core logic.
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cost of effort. Thus, although more competition increases the potential gain from a competitive
action, it may reduce the expected realized gain by increasing the probability of competitor

response — also plotted in Figure (1).

Combining the effects: an inverse U-shape relationship. To predict the effectiveness of PfP
schemes at different competition levels, we check how the expected payoff changes with respect
to competition. To do this, we plot the simulated values of equation (2) against the number of
competitors n and for different values of the competitor response probability P. Figure (2) shows
an inverted U-shape between the number of competitors and the expected payoff from a
competitive action. This implies that PfP schemes would be most effective when competition is
moderate: not too low for the business stealing effect to emerge, and not too high for the competitor

response effect not to cancel the business stealing effect.

We can also identify an interesting implication regarding the response probability in Figure
(2). As expected, when the probability of competitors’ response decreases, the expected payoff of
a competitive action grows. In the extreme case where there is no risk of retaliation by competitors
—i.e. P = 0 - the competitors’ response effect is totally muted. Therefore, the plot in this case
shows a pure business stealing effect — an increasing function similar to Figure (1). As discussed
above, some contextual factors may affect the response probability. For instance, large chain
retailers are less likely to respond to a competitive action of a local bakery, and thus, P in their case
is likely to be smaller compared to local independent bakeries. In the empirical section, we use

these factors to disentangle the two mechanisms in our estimations.
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The analytical model above serves as simple framework to illustrate the two theoretical
mechanisms and their composite effect. Cleary, the model relies on simplifying assumptions made
for analytical convenience— e.g. perfect elasticity of substitution between firm products. Real
world, is of course, more complicated and measurement is noisy. The simplifications made,
however, allow us to focus on the mechanisms of interest for our study, and illustrate their

dynamics with respect to competition.

STUDY BACKGROUND

The study firm and its competitive environment. Our study firm operates a network of bakery
shops. We use data from 193 shops during the observation period, January 2013 until June 2014.
The average shop sells around 27,000 Euros worth of fresh bread products per month, receives
10,000 customer visits, and employs 7 shop assistants, the majority of whom are women with only
basic work qualifications working part-time and earning €9 — €11 per hour, depending on tenure
(Table 1 reports these and other descriptive statistics; Table 2 reports the basic correlations). The
firm is active in a metropolitan area with several million inhabitants consisting of several cities

(see Figure 3).

The study firm had enjoyed sound performance fueled by attractive locations of its bakeries
and economies of scale owing to centralized production. The situation changed from 2011, when
supermarket chains ALDI and LIDL started opening up in-store fresh bread departments on their

premises, a process that involved installation of automated ovens, continued throughout 2011-2012
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and was finalized by 2013°. According to the firm’s management, the increase in competition by
ALDI and LIDL (henceforth large retailers)® led to a swift erosion of profits, because the fresh
bread they sold was of comparable quality and yet much cheaper. The effect of the market entry of
the large retailers on local competition was large indeed: of the average of 3.5 bakeries within a 1
km radius from our firm’s shops, 0.9 are large retailers. Hence, the entry of large retailer means an
increase in the number of local competitors by one fourth. This is a large effect, especially given
the relatively high (firm-level) price elasticity of demand for fresh bread, the relatively large scale

of the discounters’ operations, and little customer loyalty.

Intensified product market competition prompted the firm to fundamentally rethink its
business strategy and management practices along several dimensions. First, it reengineered its
production and logistics to broaden the assortment of products to include items traditionally sold
in cafés, such as snacks, cakes, sandwiches and beverages, in addition to bread. Second, shops were
redesigned to look more like cafés. Third, new marketing instruments were employed to strengthen
its brand by underlining its regional heritage and adherence to good causes. These initiatives did
not result in offsetting the effects of increased competition. Consequently, the firm introduced
additional HR practices to motivate employees to show more sales-oriented behavior. In particular,
the firm introduced a bonus paid to the sales teams in shops that reached their monthly sales target.

It is this practice that we helped design and test, and which we explore in this study.

The firm and its shops. The firm is managed by the board of directors who appoint regional

managers to oversee up to 15 shops in their geographical regions and liaise with the shop

5 Since we do not know exactly when each large retailer installed a bakery in which store, we do not use the data before
2013.
® There are other large retailers in the German market who did not install automated ovens for a number of reasons,
in particular, because on their premises, bakery shops of different chains were operating.
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supervisors who report to them. Supervisors manage their shops on a daily basis, together with the
team. Their task is to ensure that all technological and accounting procedures are adhered to, and
that the shop is adequately staffed at all times. Other tasks, such as pricing, marketing campaigns
and hiring are centralized. However, there is large scope for exerting discretionary effort in
providing higher quality service, dealing with customers more efficiently, preparing the food (for

instance, sandwiches) to higher standards, etc.

Historically, performance-based incentives were given to top managers, regional managers
and shop supervisors. In contrast, shop assistants had not received any PfP before our experiment
started. The no-PfP policy for shop assistants reflected the management belief that supervisors
controlled the assistants well enough to make the most of their efforts. However, the strategic shift
to more service orientation, triggered by intensified competition, challenged this belief as customer
experience delivered not least by the shop assistants became a more important part of the firm’s
business model. Consequently, top management decided to introduce a new PfP scheme for shop

assistants as well.

In the new PfP scheme, the bonus for the shop assistants was to be paid to the entire shop
team (including the supervisor) upon reaching the sales target. The decision to reward the team
rather than individuals was made for two reasons. First, a small amount per transaction and only
one cash register in a shop would make it impractical to record individual sales, especially at peak
times. Second, with a variety of interconnected and often simultaneously occurring jobs, such as
handling goods, operating the oven, serving customers, etc., running a shop requires cooperation
and team effort, which would be discouraged by individual incentives (Shaw, Gupta and Delery,

2002; Kretschmer and Puranam, 2008).
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The rules of the PfP scheme for shop sales teams were as follows. Teams that reached their
monthly sales target received a bonus of €100. The bonus increased by €50 for each percentage
point above the target and was capped at €300 for exceeding the sales target by 4% or more. The
team bonus was shared between shop assistants and supervisors in proportion to their working
hours in the month in question.” The attraction of this PfP scheme, illustrated in Figure (4), is its

simplicity — an important consideration for the workers it was designed for (Englmaier et al., 2016).

Introducing the new PfP scheme. The PfP scheme was first introduced on April 1% 2014 as a pilot
in 97 shops randomly selected by us. The randomness of the treatment assignment helped achieve
the balancedness of the control (no PfP) and treatment (PfP) groups in terms of average sales and
other characteristics (Table 1) in particular, the competition on the market. The balancedness is
important for an unbiased estimation of the impact of the treatment. The scheme was piloted until

June 30" 2014, after which it was rolled out to all shops.

In agreement with the worker council and to support the implementation of the PfP scheme
in the chosen shops, we prepared information leaflets to be placed in the back office of the treatment
shops, and letters to be sent to the treatment group employees. We informed the shop assistants
about the PfP rules and provided simple examples of bonus calculations. We did not mention the

control group and the involvement of the researcher to avoid potential Hawthorne-type effects.

" An exception of the bonus rules was made for the “mini-jobbers”, a special category of workers recognized by the

German tax code. Mini-jobbers, who make up 12% of the firm workforce (FTE-adjusted), can earn up to €450 per

month and are exempt from all wage taxes. However, if a mini-jobber earns more than €450 per month, they will

become liable for taxes on the full amount of their earnings. Therefore, mini-jobbers were excluded from the scheme.
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Besides the worker council and top management, the only group of workers with whom we
communicated regarding the PfP scheme were the regional managers. Unlike shop assistants and
supervisors, the regional managers knew that we were running a pilot and that control shops
existed. In a meeting at the end of March 2014, top management and us informed all regional
managers about the PfP experiment and handed every manager the list of the control and treatment
shops in their region. In the same meeting, we trained regional managers in how to explain the
team bonus to shop supervisors and assistants in the treatment group. We also instructed regional
managers on the standard response to questions about the PfP from employees in control shops:
“This is a pilot. Every shop had the same chance to be drawn into the PfP scheme. The worker
council agreed to this procedure.” We find no evidence for information spillovers between

treatment and control group shops in the post-intervention survey.

Random assignment of shops in treatment and control group. The treatment was randomly
assigned to the shops of the study firm to ensure unbiased estimation of the treatment effect. Panel
A of Table 1 reports the characteristics of shops in the control vs. treatment group. Panel B
compares our measures of local market competition. The treatment and control shops are balanced
in terms of observable characteristics, including market competition. Table 3 shows the number of
treatment shops by competition category for the period before treatment began (January 2013—

March 2014). Each category has similar numbers of treatment and control shops.

ESTIMATION PROCEDURES AND RESULTS

Average treatment effect. The random assignment of the PfP treatment to shops and the
15



balancedness of the control and treatment samples with respect to sales and local competition
enable a straightforward estimation of the average treatment effect on sales, as well as its variation
with competition. Moreover, we can interpret the estimation results in a causal way. We estimate
the average treatment effects of the PfP by a difference-in-difference estimator:

3) In(y;;) = B * treatment; * after; + month ; + shop; + y * controls;; + error;,

where y;, measures performance (sales, number of customer visits, sales per customer) of shop i in
month t, controls;; are shop-specific control variables such as log hours worked per month; after;
is a dummy variable, equal 1 for all months from April to June 2014, and 0 for all months in the
rest of our observations (from January 2013 to March 2014); the treatment; dummy takes value
1 if the PfP scheme was implemented in shop i, and errorit is the idiosyncratic error term clustered
at the shop level. We include month and shop fixed effects to control for seasonality and shop-
specific unobservables that affect sales, such as local market size. In equation (3), coefficient gis

the difference-in-differences estimate of the average treatment effect of the PfP on shop sales.

Table 4, column 1 reports the estimates from equation (3) of the treatment effects on sales
(Panel A), customer visits (Panel B) and sales per customer (Panel C) for all shops. We find an
average treatment effect on sales of 2.6%, on customer visits of 2.2% and on sales per customer
visit of 0.2%. Hence, most of the sales resulting from PfP was generated through serving more
customers. Table 4 also presents separately the results for big towns (>50,000 inhabitants). We do
so to account for differences in local market sizes and hence larger scope to affect sales in urban

compared to rural locations. Therefore, the average treatment effect and its variation with local
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competition should be larger in big towns than elsewhere, which is confirmed by the estimates of

all effect sizes being larger in the big towns.

Is there an inverse U-shaped relationship between PfP and competition? We adapt the estimator
in equation (3) to allow for treatment effects specific to each competition intensity level, as

formulated in equation (4):

G
@) In(y;r) = Z By * treatment; * after; x competition intensity;; + month; + shop;

g=1
G

+ z Yg * controls;. x competition intensity;, + error;
g=1

where g = {low, moderate, high} is the indicator for the competition intensity category, and
competition intensity, is a dummy variable with value 1 if shop i belongs to competition
category g. Hence, the coefficient g, for each value of g measures the treatment effect specific for
the respective competition intensity group. A less computationally efficient alternative to equation
(4), which produces exactly the same estimates, is to run equation (3) on the subsamples specific
to each competition category.

We measure market competition as the total number of competitors (Klanins, 2003) —
including independent, bakery chains like our study firm, and large retails — in a 1 km radius from
the focal shop, which is within walking distance.® Using this measure, we build three competition
categories: low for fewer than 3 competitors, moderate for 3 or 4 competitors, and high for more
than 4 competitors in a 1 km radius from the focal study shop. The rationale for choosing this
categorization is as follows. First, we need at least three competition categories to identify the non-

linear effect we hypothesize. Second, increasing the number of categories would increase the

8 Our results are robust to using more generous definitions (3 km) of the relevant market. There is also evidence that
customers in fast food industry rarely travel for long distances, even in areas where travel is relatively fast
(Salvaneschi, 1996).
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number of parameters to estimate, reducing statistical power. Third, the thresholds chosen were the

best to balance the share of the control and treatment shops in each category.®

Table 5 reports the estimates from equation (4) of the treatment effects on sales (Panel A),
customer visits (Panel B) and sales per customer (Panel C) for the three competition categories we

have specified, as well as separately for the whole sample and big towns.

The treatment effect on sales is at its maximum (5.2% on the whole sample, 8.9% in big
towns, both p-values < 0.01) in the moderate competition category, drastically going down in size
in both the high and low competition categories (all p-values > 0.40). The inverted U-shape they
form is in line with our theoretical predictions on the impact of the two opposing forces — business

stealing and competitor reaction — affecting optimal effort choice under PfP.

Panel B of Table 5 reports the treatment effects on the log number of customer visits by
competition category. Under moderate competition, the effects are 3.5% (p-value = 0.06) on the
whole sample, and 7.9% (p-value < 0.01) for big towns. The effects under low and high competition
are small, in the region of 1-2% (p-values > 0.11). Just like with sales, the pattern of the effect on
customer visits is consistent with the predicted relationship between competition and PfP

effectiveness.

While much of the average increase in sales resulting from PfP was generated through

serving more customers, the increase in sales was not entirely and everywhere due to extra

9 While the estimates change slightly, our key findings are robust to alternative competition categorizations.
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customer visits. Panel C presents the treatment effect estimates for log sales per customer visit. The
estimates by competition category follow a very similar pattern: around zero for the high and low,
and going up to 1.5% for the moderate competition areas. The presence of this small but still
significant effect (p-values = 0.01 on the whole sample and 0.11 for big towns) suggests that the
discretionary effort by the incentivized sales teams impacted both the extensive (more customers
visits) and intensive (more sales per customer visit) margins, with a much bigger effect on the

former.10

All in all, the inverse U-shape pattern in the performance effect of the same incentive

scheme under different levels of competition consistently shows up in our results.

Disentangling the business stealing from the competitor response effect. Our results presented so
far are the net effect of the business stealing and competitor response effects, which jointly have
created the inverse U in the treatment effect. While we cannot observe competitor response directly,
we can identify characteristics that affect the likelihood of responding to a competitive action, and

look at how these characteristics affect the dynamics of the treatment effect with competition.

The characteristic we will use is the distinction between large retailers and the other
bakeries. “Judo economics” (Gelman and Salop, 1983) suggests that when deciding whether to
respond to a competitive action, firms compare the costs of responding with the costs of
accommodating. Such comparison is more likely to favor accommodating over responding when
the firm is large, since then the global revenue losses from responding will likely outweigh the

local revenue gains. Therefore, the competitor response effect should be smaller in areas where

10 'We have used another diff-in-diff estimator that controls for shop-specific seasonality, by regressing the year-on-
year change in sales on the same changes in labor input and the treatment dummy and its interactions with the
competition measure. The results are qualitatively similar and have larger significance statistics.
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competitors are large firms compared to areas where the number of competitors is the same but

they are smaller in size.

Large retailers are global businesses and therefore unlikely to be moved by local
competitive actions. The sale of fresh bread makes up only a small percentage of the total sales of
large retailers. Therefore, business stealing should be more pronounced compared to the competitor
response effect in areas where local competition is dominated by large retailers. Consequently, we
expect the treatment effect to increase monotonically with competition in those areas (as shown in
Figure (2) for the case of P = 0). However, the competitor response effect should be strong in
markets where small bakeries and pure bakery chains are the main competitors because these shops

have stronger incentives to react and are small enough to adjust to the local conditions.

Indeed, we observed in the preparation of our study in January 2014 that within a few days,
relatively small competitors reacted to marketing innovations of our firm. For instance, they copied
promotions like “Bread of the week”, or charitable activities providing donations to local NGOs,
sports clubs etc. for each bread sold. The top management of our study firm told us that it is
common that small competitors copy marketing campaigns. Hence, we expect the same inverted-

U pattern we identified before, however, with weaker treatment effects.

To test this, we run an extended version of the difference-in-difference estimator in which
we interact the treatment effect with the intensity of competition and the share of large retailers in

the total number of competitors within 1 km from the focal shop — equation (5).

() In(y;) =

G
Z By - treatment; - after;, - share large retailers; - competition intensity;,
g=1
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+month ; + shop; + Z Yy * controls;, - competition intensity;, + error;
g=1

We then estimate the treatment effects in the areas with share large retailers = 0 (all
competitors are non-large retailers), share large retailers = 1/4 (the average share of large
retailers in the total competition, see Panel B of Table 1), and share large retailers = 1 (all
competitors are large retailers). The results in Table 6 show that the coefficient of the treatment
effect monotonically increases with competition in the areas where all competitors are large
retailers. In these areas, the treatment is likely to reflect the pure business stealing effect that would
have been observed globally if competitors had not responded to the discretionary effort action of
the incentivized sales teams in our study firm. The pattern for the average shop
(share large retailers = 1/4) is an inverted U, similar to the one observed before (recall Table
5), reflecting a mixture of the business stealing and competitor response effects. In the areas where
all competitors are non-large retailers (share large retailers = 0) there is also an inverted U,
but the maximum treatment effect, 4.3%, is lower than that reported for the average shop under
moderate competition (5.2% in Table 5), reflecting the higher likelihood of the competitor response
in those areas. Seeing the business stealing and competitor response effects “in motion” this way
lends further support to our theory as well as uncovers noteworthy heterogeneity in PfP effects
observed in different competitive environments. While the overall significance of the treatment
effect heterogeneity with respect to the structure of local competition is inevitably weakened by
four-way interactions (p-value=0.186), we are nevertheless encouraged by the directional support

for our conjecture.



Competition and efficiency. The decrease in the size of the PfP effect as competition intensity
changes from moderate to high may also be driven by an additional factor on top of the competitor
response effect identified in Table 6. The PfP scheme may have failed to generate a significant
effect on sales in high-competition areas because shops in those areas may already have been
operating close to their maximum production efficiency before team incentives were introduced.
Indeed, as competition increases efficiency by eliminating underperforming firms (Bloom, Sadun
and Van Reenen, 2016) and by stimulating managers and employees in existing firms to work
harder so as not to go bankrupt (Schmidt, 1997), shops in more competitive areas could be more
efficient than otherwise identical shops in less competitive areas, and the treatment effect would
decrease with pre-treatment production efficiency because there is less unrealized efficiency
potential. These two effects combined would weaken the treatment effect similar to the competitor

response effect.

To examine whether and how production efficiency shapes our results, we estimate a
stochastic frontier regression with shop fixed effects (Jondrow et al., 1982; Belotti and Ilardi,
2014). This model is essentially equation (3) with all variables, except that its error term (error;.)
is specified as the sum of the half-normal distributed efficiency component and a normally
distributed idiosyncratic error (the assumed difference in the distributions of these two error
components lets us identify them separately). Higher values of the efficiency component mean
sales are closer to the maximum achievable for given factor inputs (hours worked and shop

characteristics, such as size and location, captured in the fixed effect) and “technology” that
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transforms these inputs into sales. We use this efficiency component, normalized to have mean

zero and unit standard deviation for convenience, as a measure of production efficiency.

Table 7 reports descriptive statistics of the efficiency measure by competition group and its
interactions with the treatment effect. As predicted, the treatment effect is lower in more efficient
shops, especially in the moderate competition group. However, as shops located in more
competitive areas are no more efficient,!* production efficiency cannot explain the inverted U-
shape in the PfP effect we found previously. Moreover, as the estimates in Table 7 show, the

treatment effect and its pattern survive controlling for production efficiency.

Competition and performance targets. One important feature of the PfP scheme is the existence
of shop-specific sales targets. Sales targets are mainly derived from past sales adjusted by the
common sales trend. Importantly, sales targets for the upcoming year are set at the end of the
previous year, i.e. months before the PfP scheme was conceived and the randomization was
conducted (indeed, as Table 1 shows, sales targets do not differ between treatment and control
shops). However, the perceived likelihood of reaching the target may have affected the shop team’s

effort choice and thereby co-shaped the treatment effect pattern we observe.

To examine this, we allow the treatment effect to interact with both the competition group

and the pre-treatment frequency of reaching the sales target. The results (reported in Table 8) show

1 No significant differences in production efficiency by competition group is a curious finding whose fuller exploration
is beyond the scope of this paper. Suffice to say that the predicted positive link between efficiency and competition
intensity is more likely to appear at the corporate level rather than workplace, which is the level of analysis in our
paper. Also, observing firm dynamics with competition requires a longer period than ours.
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that this frequency is about a third in the low and moderate competition groups, and is slightly (but
not significantly, both p-values > 0.6) higher in the high-competition group. This difference,
already quite small, is inconsequential for our earlier results, because the treatment effect does not
materially interact with pre-treatment success. We thus rule out yet another additional explanation

to our findings.

DISCUSSION AND CONCLUSION

The strategic management literature has traditionally emphasized the notion of fit between firm
strategy and other organizational factors including firms’ environment (Balkin and Gomez-Mejia,
1987 & 1990; Miller, 1986; Miller and Friesen, 1983; Prescott, 1986). Compensation strategy as
one of the key drivers of firm performance and growth should also be viewed in this framework.
Studies in this stream have mostly focused on the congruence between compensation strategy and
firms® other strategic decisions including diversification (Kerr, 1985; Napier and Smith, 1987),
governance (Werner, Tosi and Gomez-Mejia , 2005), R&D (Galbraith and Merrill, 1991; Yanadori
and Marler, 2006), product-market strategy (Balkin and Gomez-Mejia, 1990; Gupta and
Govindarajan, 1984) and orientation towards change (Boyd and Salamin, 2001). Nevertheless, the
congruence between a widespread compensation strategy — namely PfP— and firm environment is
still understudied. PfP schemes commonly link the bonus provision to explicit or implicit market
performance. Thus, market competition can influence their effectiveness, and should accordingly
be considered in their design. However, this logic is surprisingly absent in the literature and

compensation handbooks (see e.g. Newman, Gerhart and Milkovich, 2017).

We study the role of the competitive environment in shaping the effectiveness of firms’
performance pay. Our study has important implications for both scholars and practitioners. By

theorizing on and testing the mechanisms by which competition impacts PfP, we ask which markets
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are most suited to offering these contracts. We show that PfP is most effective when competition
IS moderate: too little competition leads to low incentives because there is little extra market to
gain, while too much competition increases the likelihood of competitor response. By showing that
external market factors should be considered in the design of incentive schemes, our study also

talks to executive pay research, and more generally to research on managerial practices.

Our findings also contribute to ongoing research on PfP schemes. Our controlled
experimental setup enables let us minimize potential contamination effects and answer the research
question precisely. For instance, besides the incentive effect, the literature reports sorting as one of
the channels that affects firm productivity through PfP (Bandiera, Barankay and Rasul, 2007;
Cadsby, Song and Tapon, 2007; Lazear, 1986). Moreover, technology, product and market
differences across firms are reported to impact their decision to adopt PfP (Boning, Ichniowski and
Shaw, 2007). By conducting a randomized field experiment in a single firm, we minimize the

empirical challenges arising from across-firm heterogeneity and generate valid results.

Further, we contribute to the literature on the effect of market competition on the strength
and likelihood of adoption of incentives (Baggs and De Bettignies, 2007; Hart, 1983; Raith 2003;
Vives 2008; Cufiat and Guadalupe, 2005). The existing literature finds that PfP is more likely to be
used in more competitive environments (Bloom and Van Reenen, 2007). Our model predicts that
the effectiveness of a PfP scheme goes down when the intensity of competition exceeds some
optimal level. These two results are not necessarily contradictory, since the number of relevant
competitors does not have to exceed the optimal — after all, most markets are oligopolistic rather
than perfectly competitive. Besides, there may be other reasons beyond the scope of this study that
incentivize firms facing high competition to implement PfP, such as the risk of bankruptcy

(Schmidt, 1997) or the need to compete for talent (Bénabou and Tirole, 2016). Finally,
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implementing PP is a firm-wide decision and is therefore affected by the level of competition that

the firm as a whole is facing, rather than the local variations that we study.

Our paper, as any study, is not free of limitations. First, our empirical setup does not directly
measure discretionary effort and even what teams do when exerting it. Thus, we cannot directly
test whether the ineffectiveness of PfP for extreme low/high competition is due to low effort exerted
by the sales team (i.e. due to little expected payoff), or due to market forces offsetting the efforts
of the sales team. While investigating this is interesting from an academic perspective, it does not
alter the managerial implications of our study. Moreover, as the special study context of this paper
— i.e. the fresh bread market — enables empirical robust analysis, it may (or may not) come at the
cost of lowering external validity. We have leveraged assumptions such as substitutability of
products, thanks to our study context. However, some of these assumptions may not hold for other
markets, which may influence the findings.*? Specifically, our model and findings are applicable
to describe standard retail contexts, where transactions costs are subject to geographical proximity
between customers and service providers. Therefore, these findings may not be applicable to retail
contexts with different characteristics, namely e-commerce. Finally, our study and its implications
are based on rational agents’ analysis of PfP schemes. Therefore, the implementation of our results
— e.g. a corporation offering a bonus vs. flat pay based on its shops’ competition environment —
needs to consider potential confounding factors such as social comparison costs (Obloj and
Zengers, 2015 and 2017). We believe that these present a fertile ground for future research in this

area.

To conclude, we hope that our findings on the effect of market competition on PfP

effectiveness will provide insights for strategy scholars, firms and managers when designing

12 Relaxing the assumption of perfect substitutability is likely to weaken both mechanisms in our model simultaneously.
Therefore, our key findings may actually hold in markets with less substitutable products.
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compensation strategy. Moreover, we hope that this study will stimulate future theoretical and

empirical developments on the interaction of external factors on management practices.
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Tables and Figures

Table 1: Pre-treatment shop characteristics

Panel A: Characterigtics of the shops

All shops Control Treatment t-test
(n=193) (n=96) (n=97) p-value
Mean sales 27,211 26,730 27,701 0.608
(13,149) (11,341) (14,750)
Mean sales (in logs) 10.12 10.11 10.13 0.710
(0.41) (0.40) (0.42)
Mean sales targets 28,798 28,322 29,278 0.628
(13.583) (11,513) (15,384)
Mean # of customer visits 9,681 9,590 9,774 0.740
(3,843) (3,813) (3,873)
Mean number of employees 7.19 7.20 7.18 0.959
(3.02) (3.04) (3.00)
Mean total working time 721 719 724 0.910
(333) (335) (330)
Mean age 40.52 40.17 40,86 0438
(6.42) (6.49) (6.33)
Panel B: Characteristics of the shop location
Mean market c_ompetition _ 3.54 3.70 3.39 0.484
(= # of competitors, 1 km radius) (3.03) (3.17) (2.89)
Mean market cor_npetition from_large retailers 0.89 0.89 0.90 0.929
(= # of large retailers, 1 km radius) (0.90) (0.92) (0.88)
Share of Iarge_retailers (in total) _ _ 0.28 0.28 0.29 0.917
(= # large retailers / total # of competitors, 1 km radius) (0.33) (0.32) (0.33)
Big town 36.3% 38.5% 34.0% 0.516

Notes: Standard deviations are in parentheses. Last column reports the p-values of the two-sided t-test of equality of the
means. Panel A: The data are from January 2013 to March 2014. Panel B: The data are as of the beginning of the treatment.
“Big town” refers to municipalities with more than 50,000 inhabitants.
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Table 2: Pairwise correlations

Mean Mean # of Mean # of  Mean total Mean  Mean market Mean % of large
sales  customer visits employees working time age competition ~ competitors

Mean # of customer visits 0.920

Mean number of employees 0.748 0.689

Mean total working time 0.792 0.738 0.934

Mean age -0.202 -0.239 -0.202 -0.182

Mean market competition -0.034 -0.008 0.009 0.034 -0.060

Mean % of large competitors ~ 0.129 0.180 0.079 0.104 -0.096 -0.117

Big town 0.223 0.294 0.215 0.267 -0.269 0.046 0.342

Notes: The data are from January 2013 to March 2014. “Big town” refers to municipalities with more than 50,000 inhabitants.

Table 3: Summary statistics per competition category (pre-treatment)

¢

Sample All shops (n=193) ; Shopsin big towns (n=70)
Level of competition Low  Moderate  High E Low Moderate  High
# of competitors in 1 km radius 0,1,2 3,4 >4 0,1,2 3,4 >4
# of shops 81 53 59 30 21 19
Treatment shops (in %) 51.9% 50.8% 47.5% 53.3% 38.3% 47.4%
Mean sales 27,527 28,179 25,937 30,397 33,018 30,151
(11,559) (18,379)  (8,954) (13,230)  (24,575) (8,321)
Mean # of customer visits 9,862 9,695 9,423 11,253 10,941 11,320
(3,950) (4,271) (3,248) (4,877) (4,947) (3,331)

Notes: Standard deviations are in parentheses. The data are from January 2013 to March 2014. “Big town” refers
to municipalities with more than 50,000 inhabitants3

33



Table 4: Average treatment effect on sales, number of customer visits and sales per customer

Panel A: Log (sales)

Sample All shops (n=193) E Shopsin big towns (n=70)
Treatment effect 0.026 0.037
(0.012) (0.025)

Panel B: Log (number of customer visits)

Treatment effect 0.022 0.032
(0.010) (0.018)

Panel C: Log (salesper customer visit)

Treatment effect 0.002 0.004
(0.007) (0.018)

Notes: The table shows estimated average treatment effects (diff-in-diff, see equation 3), for all shops, and for the
subsample of shops in big towns. The dependent variable in Panel A is log (sales), in Panel B log (number of customer
visits) and in Panel C log (sales per customer visit). “Big town” refers to municipalities with more than 50,000
inhabitants. I Controls include shop and month fixed effects, log total hours worked, and the share of large retailers in
the total competition. Number of shop-month observations: 3,148. Number of shops: 193. Standard errors clustered
by shop are in parentheses.

Table 5: Average treatment effect on sales, number of customer visits and sales per customer
visit, by level of competition

Panel A: Log (sales

Sample All shops (n=193) ; Shopsin big towns (n=70)

Level of competition Low  Moderate  High Low  Moderate  High

Treatment effect 0.019 0.052 0.009 0.018 0.089 0.021
0.022)  (0.019)  (0.019) (0.053)  (0.022)  (0.038)

Panel B: Log (number of customer visits)

Treatment effect 0.023 0.035 0.007 0.019 0.079 0.010
(0.014)  (0.018)  (0.018) (0.028)  (0.021)  (0.036)

Panel C: Log (salesper customer vist)

Treatment effect -0.007 0.015 0.003 -0.001 0.015 0.004
(0.017)  (0.006)  (0.005) (0.047)  (0.009)  (0.006)

Notes: The table shows estimated average treatment effects (diff-in-diff, see equation 4) per category of competition,
for all shops, and for the subsample of shops in big towns. The dependent variable in Panel A is log (sales), in Panel
B log (number of customer visits) and in Panel C log (sales per customer visit). “Big town” refers to municipalities
with more than 50,000 inhabitants. Controls include shop and month fixed effects, and log total hours worked.
Standard errors clustered by shop are in parentheses.
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Table 6: Average treatment effect on sales, for category of competition

Panel A: Share of large retailersin the total competition =0

Level of competition Low Moder ate High
Treatment effect 0.036 0.043 -0.014
(0.019) (0.035) (0.030)

Panel B: Share of large retailersin the total competition = 1/4

Treatment effect 0.045 0.054 -0.018
(0.024) (0.043) (0.037)

Panel C: Share of large retailersin the total competition = 1

Treatment effect -0.013 0.075 0.111
(0.063) (0.047) (0.089)

Notes: The table shows the estimated average treatment effects (diff-in-diff, see equation 5) per category of
competition. The dependent variable in all the models is log (sales). Panel A estimates the average treatment effect
for the shops with no large retailers (ALDI and LIDL) within a 1 km radius. Panel B estimates the same for the average
shop for which ¥ of its local competitors are large retailers. Panel C reports the same for the shops for which all the
local competitors are large retailers. Controls include shop and month fixed effects, log total hours worked, and the
share of large retailers in the total competition. Number of shop-month observations: 3,148. Number of shops: 193.

Standard errors clustered by shop are in parentheses.
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Table 7: The effect of shop efficiency on average treatment effect on sales

Panel A: Summary of gatisticsfor shop efficiency

§

Sample All shops (n=187) : Shops in big towns (n=68)
Level of competition Low Moder ate High Low Moderate High
Average shop-level efficiency measure ~ 0.067 -0.095 -0.007 0.090 -0.244 -0.111
(1.035) (1.161) (0.767) (0.647) (1.045) (0.959)
Panel B: Average treatment effect on Log (sales)
Treatment effect 0.014 0.048 0.007 0.039 0.092 0.020
(0.023) (0.018) (0.018) (0.061) (0.019) (0.025)
Treatment effect * efficiency -0.013 -0.077 -0.048 -0.080 -0.073 -0.028
(0.025) (0.020) (0.030) (0.083) (0.022) (0.030)

Notes: Panel A shows mean and standard deviation (in parentheses) of shop-level efficiency measure (standardized).
Owing to technical difficulties of estimating the efficiency term from the stochastic frontier regression, it could not be
estimated for all shops. Hence, six shops were dropped from the analysis (two from big towns). Panel B reports estimated
average treatment effects (diff-in-diff) per category of competition, for all shops, and for the subsample of shops in big
towns. The dependent variable is log (sales). “Big town” refers to municipalities with more than 50,000 inhabitants.
Controls include shop and month fixed effects, log total hours worked, and shop-level efficiency. Number of shop-month
observations: 3,085 in the sample of all shops, and 1,125 in the subsample of shops in big towns. Standard errors clustered

by shop are in parentheses.

Table 8: Average treatment effect on sales, controlling for frequency of reaching the sales target

Panel A: Summary of statisticsfor frequency of achieving the salestar get

Sample All shops (n=193) Shopsin big towns (n=70)

Level of competition Low Moderate High Low Moderate High

Frequency of reaching sales target ~ 0.338 0.334 0.376 0.339 0.409 0.334
(0.264) (0.245) (0.271) (0.276) (0.284) (0.244)

Panel B: Average treatment effect on Log (sales)

Treatment effect 0.021 0.050 0.010 0.021 0.084 0.027
(0.022) (0.018) (0.020) (0.063) (0.020) (0.038)

Treatment effect * frequency -0.007 -0.006 -0.021 0.020 -0.010 -0.022
(0.023) (0.022) (0.013) (0.067) (0.016) (0.023)

Notes: Panel A shows mean and standard deviation (in parentheses) of pre-treatment frequency of reaching the sales target.
Panel B reports estimated average treatment effects (diff-in-diff) per category of competition, for all shops, and for the
subsample of shops in big towns. The dependent variable is log (sales). “Big town” refers to municipalities with more than
50,000 inhabitants. Controls include shop and month fixed effects, log total hours worked, and pre-treatment average
frequency of reaching the sales target. Number of shop-month observations: 3,148 in the sample of all shops, and 1,258

in the subsample of shops in big towns. Standard errors clustered by shop are in parentheses.
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Figure 1: Business stealing and competitors’ response effect, with respect to market competition
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Figure 2: Simulated relation of the expected payoff and market competition — equation (2)

Notes: The figure shows the simulated pattern of expected payoff (Y axis) with respect to number of market competitors (X axis).
The payoff function is plotted for different values of P (probability of competitors’ response). The payoff function is the equation

(2); E(bonus) = - YL, CM-Pi- (1 —P)n=i. =

—. (1 - i) — €. In the above figure, a is set to one and € is set to zero.
i+1 n+1
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Figure 3: The locations of the shops for our study firm (), ALDI (O) and LIDL (A)
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Figure 4: The PfP scheme for the treatment shops

Notes: This figure illustrates the amount of bonus a shop sales team would receive depending on reaching and exceeding its
sales target in a given month. Not reaching the target brings no bonus. Reaching or exceeding the target by up to 1% awards
a bonus of 100 EUR. Every percentage point on top of 1% above the target brings an additional 50 EUR of bonus. The bonus
is capped at 300 EUR paid when the target is exceeded by 4% or more. The bonus is shared between the part-time and full-
time employees in the shop in proportion to their working hours during that month.
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